Benchmarking Anomaly-Based Detection Systems
نویسندگان
چکیده
Anomaly detection is a key element of intrusiondetection and other detection systems in which perturbations of normal behavior suggest the presence of intentionally or unintentionally induced attacks, faults, defects, etc. Because most anomaly detectors are based on probabilistic algorithms that exploit the intrinsic structure, or regularity, embedded in data logs, a fundamental question is whether or not such structure influences detection performance. If detector performance is indeed a function of environmental regularity, it would be critical to match detectors to environmental characteristics. In intrusion-detection settings, however, this is not done, possibly because such characteristics are not easily ascertained. This paper introduces a metric for characterizing structure in data environments, and tests the hypothesis that intrinsic structure influences probabilistic detection. In a series of experiments, an anomaly-detection algorithm was applied to a benchmark suite of 165 carefully calibrated, anomalyinjected datasets of varying structure. Results showed performance differences of as much as an order of magnitude, indicating that current approaches to anomaly detection may not be universally dependable.
منابع مشابه
Moving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملA Survey of Anomaly Detection Approaches in Internet of Things
Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملAnomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملراهکار ترکیبی نوین جهت تشخیص نفوذ در شبکههای کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی
In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...
متن کامل